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Abstract: 

 

Introduction: Opioids are the oldest and most potent drugs for the treatment of severe pain, but they are 

burdened by detrimental side effects such as respiratory depression, addiction, sedation, nausea and 

constipation. Their clinical application is undisputed in acute (e.g. perioperative) and cancer pain, but their 

long-term use in chronic pain has met increasing scrutiny and has contributed to the current “opioid crisis”. 

Areas covered: This article reviews pharmacological principles and research strategies aiming at novel 

opioids with reduced side effects. Basic mechanisms underlying pain, opioid analgesia and other opioid 

actions are outlined. To illustrate the clinical situation and medical needs, plasticity of opioid receptors, 

intracellular signaling pathways, endogenous and exogenous opioid receptor ligands, central and 

peripheral sites of analgesic and side effects are discussed.  

Expert opinion: The epidemic of opioid misuse has taught us that there is a lack of fundamental knowledge 

about the characteristics and management of chronic pain, that conflicts of interest and validity of models 

must be considered in the context of drug development, and that novel analgesics with less abuse liability 

are badly needed. Currently, the most promising perspectives appear to be augmenting endogenous opioid 

actions and selectively targeting pathological conformations of peripheral opioid receptors.    
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Article Highlights 

• Tissue injury leads to excitation of peripheral sensory neurons (nociceptors). These signals are 

transferred to the spinal cord and brain, where they are integrated to generate the perception of 

pain. Because central sensitization critically depends on the peripheral drive by nociceptors, 

therapeutic interventions targeting such neurons are promising. Endogenous mechanisms 

counteract pain at peripheral and central levels. In injured peripheral tissue, immune cell-derived 

opioid peptides (endorphin) can silence nociceptors carrying opioid receptors.  

• Opioid receptors are expressed by central and peripheral neurons. Agonist binding promotes 

intracellular coupling of Gi/o proteins to the receptor. Downstream signaling pathways lead to 

blockade of neuronal excitation and analgesia. Subsequent binding of arrestins triggers receptor 

desensitization and internalization.  

• Pathological (e.g. inflammatory) pain can lead to enhanced opioid receptor function. Thereby, 

significant analgesic effects are mediated by opioid receptors localized on peripheral sensory 

neurons. 

• Opioid agonists inhibit clinical pain after peripheral (topical, intraarticular), neuraxial (intrathecal, 

epidural, intracerebroventricular), or systemic (intravenous, oral, subcutaneous, sublingual, 

transdermal) administration. Adverse effects include respiratory depression, sedation, addiction, 

nausea and constipation. Opioids alone are not appropriate for the treatment of chronic non-

cancer pain. Species differences must be considered when comparing preclinical with clinical 

findings. 

• Current research strategies aim at reducing side effects by augmenting endogenous opioid 

mechanisms, biased ligands and selective activation of peripheral opioid receptors. Both 

pharmacokinetic and pharmacodynamic concepts are pursued. 

• Novel drugs for clinical application have not yet arisen from those strategies, although some 

compounds have advanced to clinical phase III trials.   
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1.  Introduction  

 

1.1. Pain generation 

 

Pain may be roughly divided into two broad categories: physiological and pathological pain. Physiological 

(acute, nociceptive) pain is an essential early warning sign that usually elicits reflex withdrawal and thereby 

promotes survival by protecting the organism from (further) injury. In contrast, pathological (e.g. chronic 

neuropathic) pain is an expression of the maladaptive operation of the nervous system; it is pain as a 

disease involving complex biopsychosocial interactions [1]. Physiological pain is mediated by a sensory 

system consisting of primary afferent neurons, spinal interneurons, ascending tracts, and supraspinal 

areas. Trigeminal and dorsal root ganglia (DRG) give rise to high-threshold A�� and C-fibers (nociceptors) 

innervating peripheral tissues (skin, muscles, joints, viscera). When peripheral tissue is damaged, 

nociceptors are sensitized and/or activated by thermal, mechanical and/or chemical stimuli. Examples are 

adenosine triphosphate, neuropeptides, nerve growth factor, prostanoids, bradykinin, proinflammatory 

cytokines and protons (Table 1) [2]. Many of these agents lead to opening of excitatory cation channels in 

the nociceptor membrane. This produces inward depolarizing currents and subsequent action potentials 

that are then conducted along the sensory axon to the dorsal horn of the spinal cord. Thereafter, these 

impulses are transmitted to ascending spinal neurons, brainstem, thalamus and cortex. Repeated 

nociceptor stimulation can sensitize both peripheral and central neurons (activity-dependent plasticity, 

“wind-up”). This can be sustained by changes in the expression of genes coding for neuropeptides, ion 

channels, receptors and signaling molecules (transcription-dependent plasticity) in peripheral and central 

neurons [2, 3]. Both induction and maintenance of central sensitization are critically dependent on the 

peripheral drive by nociceptors, indicating that therapeutic interventions targeting such neurons may be 

particularly effective [3, 4].  

 

 

1.2. Pain inhibition 

 

Concurrent with such excitatory events, powerful endogenous mechanisms counteracting pain unfold. This 

was initially proposed in the “gate control theory of pain” of 1965 and has since been corroborated and 

expanded by experimental data in the central nervous system (CNS) and in the periphery. In 1990, a 

“peripheral gate” at the source of pain generation was discovered by the demonstration that immune cell-

derived opioid peptides can block the excitation of nociceptors carrying opioid receptors within injured 

tissue [5, 6]. This was confirmed by clinical studies in surgical patients [7], and it represented the first 

example of many neuro-immune interactions relevant to pain [8-11]. Other antiinflammatory mediators 
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were also found to be involved [12-14]. In the spinal cord, nociceptive signals are inhibited by the release 

of endogenous opioid peptides or GABA from interneurons, which activate presynaptic opioid- and/or 

GABA-receptors on central nociceptor terminals to reduce excitatory transmitter release. The opening of 

postsynaptic K+ or Cl- channels by opioids or GABA evokes hyperpolarizing inhibitory potentials in dorsal 

horn neurons. Descending inhibitory noradrenergic, serotonergic and opioid pathways also become 

activated. Key regions in the brain are the periaqueductal grey and the rostral ventromedial medulla, which 

projects to the spinal cord dorsal horn [2, 15]. The central integration of signals from excitatory and 

inhibitory neurotransmitters, cognitive, emotional and environmental factors eventually results in the 

perception of “pain”. When the intricate balance between biological (neuronal), psychological (e.g. 

learning, memory, distraction) and social (e.g. attention, reward) factors becomes disturbed, chronic pain 

can develop [1, 16]. The treatment of acute and chronic pain remains a major challenge in clinical medicine 

and public health [4, 17, 18]. For example, less than half of patients undergoing surgery report adequate 

postoperative pain relief [18], and there is a lack of fundamental knowledge about the management of 

chronic pain which has led to widespread misuse of analgesic drugs [17].  

  

1.3. Opioid receptors, signal transduction, receptor recycling 

 

Opioid receptors are expressed by central and peripheral neurons, by neuroendocrine (pituitary, adrenals), 

immune, and ectodermal cells [10, 15, 19]. Early binding studies and bioassays defined three main types of 

opioid receptors in the CNS, the mu-, delta- and kappa-receptors [20, 21]. Additional receptor types were 

proposed (e.g. sigma, epsilon, orphanin) but are no longer considered "classical" opioid receptors. The 

identification of complementary DNA and the selective deletion of opioid receptor genes in mice confirmed 

the existence of only three genes [21, 22]. Opioid receptors belong to the class A gamma-subgroup of 

seven transmembrane G-protein-coupled receptors (GPCR) and show 50-70% homology between their 

genes [21, 23]. Additional pharmacological subtypes may result from alternative splicing, posttranslational 

modifications and/or receptor oligomerization (i.e. physical interaction between two or more receptor 

monomers) [20-22, 24]. Because many of those studies have relied on antibody-based experimental 

techniques, it is noteworthy that specificities of currently available antibodies have been questioned, thus 

raising caveats [25]. High-resolution crystallized tertiary structures of mu-, delta- and kappa-opioid 

receptors have been resolved [20].  

 Opioid receptors (and other GPCR) have orthosteric and allosteric binding sites. The former are 

defined as the sites for endogenous opioid peptides and standard exogenous ligands, the latter are 

separate sites for endogenous or exogenous modulators (see below) [23, 26]. After orthosteric binding of a 

ligand, conformational changes (possibly influenced by allosteric modulators) allow intracellular coupling of 

Gi/o proteins to the receptor. At the Gα subunit, GTP replaces GDP, and dissociation of the heterotrimeric G-
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protein complex into Gα and Gβγ subunits ensues. The former inhibit adenylyl cyclases and cAMP 

production, whereas the latter directly interact with different membrane ion channels (Fig. 1) [19, 27, 28]. 

This interaction can modulate pre- and postsynaptic Ca++ currents and thereby attenuate the excitability of 

neurons and/or reduce the release of pronociceptive/proinflammatory neuropeptides [2, 27, 29, 30]. In 

addition, opioid receptor activation leads to opening of G-protein-coupled inwardly rectifying K+ (GIRK) 

channels, thereby preventing neuronal excitation and/or propagation of action potentials [28, 31]. Opioids 

also inhibit Na+-, Ih-, transient-receptor-potential (TRP)- and acid sensing ion-channels in DRG neurons, and 

excitatory postsynaptic currents in the spinal cord [15, 32-35]. In addition, the reduced peripheral release 

of proinflammatory neuropeptides can result in significant antiinflammatory effects [30]. The combination 

of these effects synergistically lead to decreased transmission of nociceptive stimuli at all levels of the 

neuraxis and to profoundly reduced perception of pain.  

Various kinases can phosphorylate intracellular regions of opioid receptors and promote binding of 

arrestin molecules. This leads to receptor desensitization by preventing G-protein coupling, and to receptor 

internalization via clathrin-dependent pathways. Recycling of dephosphorylated opioid receptors and their 

reintegration into the plasma membrane reinstates signal transduction, whereas the alternative targeting 

to lysosomes leads to receptor degradation (Fig. 1) [36].  

Consistent with the expression of opioid receptors at all levels of the neuraxis, opioid agonists can 

effectively inhibit clinical pain after peripheral (topical, intraarticular), neuraxial (intrathecal, epidural, 

intracerebroventricular), or systemic (intravenous, oral, subcutaneous, sublingual, transdermal) 

administration [15, 37-39]. The three opioid receptor types all mediate analgesia but differing side effects, 

mostly due to their variable regional expression and functional activity in different parts of central and 

peripheral organ systems. For example, mu-agonists produce respiratory depression, sedation, 

reward/euphoria, nausea and constipation. Kappa-agonists induce dysphoria, sedation and diuresis, and 

delta-receptors can mediate reward, respiratory depression and convulsions. Most of these effects are 

elicited in the CNS, while constipation is mainly mediated by opioid receptors in the intestinal myenteric 

plexus [15, 24, 40-45]. 

 

1.4. Endogenous opioids 

 

Endogenous opioid peptides are derived from the precursors proopiomelanocortin (encoding beta-

endorphin), proenkephalin (encoding Met-enkephalin and Leu-enkephalin) and prodynorphin (encoding 

dynorphins). These peptides contain the common Tyr-Gly-Gly-Phe-Met/Leu sequence at their amino 

terminals, known as the opioid motif. Beta-endorphin and the enkephalins are antinociceptive agents 

acting at mu� and delta�opioid receptors. Dynorphins can elicit both pro- and antinociceptive effects via N-

methyl-D-aspartate receptors and kappa-opioid receptors, respectively. A fourth group of tetrapeptides 
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(endomorphins) with yet unknown precursors do not contain the pan-opioid motif but bind to 

mu�receptors with high selectivity. Opioid peptides are expressed throughout the central and peripheral 

nervous systems, in neuroendocrine tissues, and in immune cells [10, 11, 13, 15]. Interactions between 

immune cell-derived opioid peptides and peripheral opioid receptors have been examined extensively, 

particularly with regard to the generation of analgesia [9-11].  

 

2. Pathophysiology and clinical challenges 

 

2.1. Plasticity of the opioid system under pathological conditions 

 

Pathological pain is associated with multiple adaptations in the nervous, endocrine and immune systems 

[1, 2, 9, 12]. Numerous investigations have been conducted in models of peripheral tissue or nerve injury 

associated with inflammation. This is in keeping with the notion that inflammation (and accompanying 

tissue acidosis) is an essential component of a large group of painful syndromes such as arthritis, 

neuropathy, cancer, wounds and surgery (Table 1) [2, 46]. Indeed, diseases with an inflammatory 

component have been termed our greatest health threat [47]. Initial investigations demonstrated 

upregulation of opioid receptors and peptides in the spinal cord [48]. In addition, evidence emerged that 

significant antinociceptive effects are mediated by opioid receptors localized on peripheral sensory 

neurons and that opioid agonists elicit stronger analgesic effects in inflamed than noninflamed tissue of 

animals and humans [5, 49-51]. These intriguing observations stimulated extensive research into the 

underlying mechanisms. 

We and others found that peripheral tissue inflammation induced upregulation of opioid receptors 

and their mRNAs in DRG neurons, which was dependent on neuronal electrical activity and on local 

cytokine production [10, 19]. In addition, the peripherally directed axonal transport of opioid receptors in 

DRG neurons was increased [52], and the perineural barrier was disrupted, thus facilitating access of opioid 

agonists to their receptors [53]. These events were ascribed to the influence of various inflammatory 

mediators such as bradykinin, nerve growth factor and prostaglandins [10, 19]. Furthermore, it was shown 

that G-protein coupling of opioid receptors was augmented [54], and that low pH (as seen in inflammation; 

Table 1) increased opioid agonist efficacy in vitro [55, 56]. Recordings from sensory nerve fibers supplying 

injured tissue revealed opioid inhibition of spontaneous and stimulus-evoked action potentials (reviewed 

in [19]).  

Nerve injury resulting in neuropathic pain is another condition influencing opioid receptor 

expression in peripheral sensory neurons. For example, upregulation of opioid receptors and accumulation 

of opioid peptide-producing immune cells was detected at the site of nerve injury, accompanied by 

enhanced antinociceptive activity of opioid agonists [9, 10, 57]. 
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Thus, besides changes in the CNS, the expression, axonal transport, signaling and accessibility of 

opioid receptors on DRG neurons are augmented, suggesting that tissue or nerve injury are prerequisites 

to “unmask” peripheral opioid effects [19, 49, 51]. Opioid peptides and receptors expressed by immune 

cells can also contribute to analgesia [57].  

The clinical significance of these observations has been confirmed in studies demonstrating that 

patients with joint inflammation express opioid peptides in immune cells and opioid receptors on sensory 

nerve terminals within synovial tissue [7, 58, 59]. After knee surgery, the patients’ pain and analgesic 

consumption was enhanced by blocking the interaction between the endogenous opioids and their 

receptors [7], and it was reduced by stimulating opioid peptide secretion or by intraarticular application of 

opioid agonists [1, 39, 50]. Moreover, endogenous opioid peptides within injured tissue were found to 

produce additive/synergistic analgesic effects rather than cross-tolerance at peripheral opioid receptors, 

both in animals and humans [57, 58, 60, 61]. After surgical injury, up to half of the analgesic effect 

produced by intravenous morphine can be mediated by peripheral opioid receptors [62].  

 

2.2. Tolerance, dependence, addiction 

 

Tolerance describes the phenomenon that the magnitude of a given drug effect decreases with repeated 

administration of the same dose, or that increasing doses are needed to produce the same effect. All 

opioid-induced effects (e.g. analgesia, nausea, respiratory depression, sedation, constipation) can be 

subject to tolerance development, albeit to different degrees [36, 44, 63-65]. In contrast to the 

experimental literature, there is a lack of carefully controlled clinical studies demonstrating the 

development of pharmacodynamic tolerance in opioid analgesia [66, 67]. Of note, pharmacokinetic (e.g. 

altered distribution or metabolism) and learned tolerance (e.g. development of compensatory skills), as 

well as increased nociceptive stimulation by tumor growth, inflammation or neuroma formation are 

possible reasons for increased dose requirements [63, 68]. Tolerance development was shown to be 

reduced in inflammatory pain. This was ascribed to the continuous presence of endogenous opioid 

peptides and enhanced recycling of peripheral opioid receptors [58, 61].  

Dependence is not synonymous with tolerance. Physical dependence is defined as a state of 

adaptation that is manifested by a withdrawal syndrome elicited by abrupt cessation, rapid dose reduction, 

and/or administration of an antagonist [34, 69]. All opioids produce clinically relevant physical 

dependence, even when administered only for a relatively short period of time [70].  

Addiction is a complex syndrome involving reward/euphoria, the urge to avoid withdrawal, craving, 

uncontrolled/compulsive drug use despite harmful side effects, and other drug-related aberrant behaviors 

(e.g. altering prescriptions, manipulating health care providers, drug hoarding or unsanctioned dose 
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escalation) [69]. Addiction is likely to play a role in opioid misuse by chronic pain patients, and by 

individuals with opioid use disorder associated with prescription opioids (see below) [71-75].  

 

2.3. Opioid-induced hyperalgesia 

 

There is an ongoing debate whether opioids paradoxically induce hyperalgesia. Upon closer scrutiny of the 

available data, it appears that most studies have in fact shown withdrawal-induced hyperalgesia, a well-

known phenomenon following the abrupt cessation of opioids [34, 76, 77]. At ultra-high doses, occasionally 

encountered in extreme cancer pain, singular cases of allodynia have been attributed to neuroexcitatory 

effects of opioid metabolites. To date, there is no conclusive evidence that clinically significant 

hyperalgesia occurs during the perioperative or chronic administration of regular opioid doses in patients 

[67, 76, 78, 79]. 

 

2.4. Long-term opioid use in chronic pain 

 

Conventional opioid agonists are undisputed in the treatment of severe acute and cancer pain, but their 

long-term use in chronic non-malignant (e.g. neuropathic, musculoskeletal, abdominal) pain has not 

proven effective. Meta-analyses show clinically insignificant reduction of pain scores, and epidemiological 

data suggest that quality of life or functional capacity are not improved [74, 80, 81]. Adverse side effects 

(e.g. nausea, sedation, constipation, respiratory depression, cognitive deficits) and lack of analgesic efficacy 

have led to the drop-out of high numbers of subjects in long-term studies [66, 74, 81]. Considering the 

multifactorial bio-psycho-social etiology of chronic pain, it is indeed not surprising that drugs are not 

beneficial if affective components, learned pain behavior, dysfunction, psychosocial factors and 

dependence on the health care system are the main problems [16, 82]. Notwithstanding, opioids are 

prescribed widely and addiction, overdoses, death rates and misuse have reached epidemic proportions 

[72-75]. Thus, the use of opioids as a sole treatment modality in chronic non-malignant pain is strongly 

discouraged. Instead, chronic pain requires a multidisciplinary approach encompassing various 

pharmacological and non-pharmacological (psychological, physiotherapeutic) treatment strategies [1, 17, 

72, 74]. 

 

2.5. Genetic variants and species-differences 

 

The mu-opioid receptor gene OPRM1 was among the first genes screened for functional relevance with 

regard to analgesia. The human single nucleotide polymorphism (SNP) OPRM1 118 A>G is the most 

thoroughly investigated candidate to date. In vitro biochemical and molecular assays indicated altered 
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binding affinitiy, signal transduction and expression, and it was assumed that this may underly occasionally 

diminished opioid efficacy in patients. However, meta-analyses demonstrated that these findings translate 

only into very small clinical effects without major relevance [83, 84]. Thus, with the possible exception of 

the metabolic enzyme CYP2D6, current evidence is insufficient to base opioid analgesic prescribing on 

genetic factors of individual patients [85]. Nonetheless, because personalized pain therapy remains an 

attractive concept, efforts continue to find new genetic variants predicting analgesic efficacy and side 

effects of opioids [85-87]. 

Another important consideration are species differences [21, 24, 88]. Numerous studies on intra- 

and inter-species differences have demonstrated that even single amino acid variations in opioid receptor 

proteins can have measurable effects on the structure-activity of the receptor [21, 24, 31, 86, 87, 89]. 

Extensive alternative splicing of the mu-opioid receptor gene has been described in different species and 

strains, possibly enabling divergent anatomical distributions, expression levels, oligomers, recycling and 

intracellular signaling events [24]. In addition, disparate (sometimes opposite) CNS or intestinal 

phenomena were detected in mice versus rats or humans (e.g. G-protein activation, adenylyl cyclase, 

locomotion) [45, 90-96]. A recent study reported that tolerance to opioid-induced analgesia was 

dependent on mu-opioid receptors expressed in DRG neurons in mice [97], contrary to findings in rats and 

humans [58, 61]. Opioid agonists did not affect K+ currents [31, 32] or TRPV1 channels [32, 35, 96] in mouse 

DRG neurons, but did so in rat [31, 33, 34, 96]. Studies on gene expression of K+ channels suggested a 

greater similarity between humans and rats than between humans and mice [31]. Thus, mice may not be 

the most appropriate species to study opioid actions. Similar to other fields (e.g. immunology, oncology), 

all these findings have to be taken into consideration when preclinical data are analyzed to predict drug 

effects in humans (see below).  

 

3. Current research strategies 

 

The search continues for novel opioids and formulations to reduce adverse effects. Previously developed 

selective agonists for delta- or kappa-opioid receptors were troubled by unacceptable side effects (e.g. 

convulsions, dysphoria) [41, 98]. Thus, alternative strategies are being pursued.  

 

3.1. Abuse-deterrent formulations 

 

One approach to the problem of addiction was the development of “abuse-deterrent” formulations, e.g. by 

increasing resistance to crushing, chewing or dissolving, or by adding antagonists or other aversive 

ingredients. However, the active agents still retain euphoric or respiratory depressant properties. Indeed, 

the dissemination of such formulations has spawned sophisticated ways of defeating them, and has led to 
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increasing heroin use and death rates. This has reinforced the notion that complete prevention of abuse 

will not be achieved by pharmaceutical strategies alone, but must include psycho-social and other (e.g. 

regulatory, educational) approaches [99-101].  

 

3.2. Augmenting endogenous opioid mechanisms 

 

Endogenous opioid peptides are susceptible to rapid enzymatic degradation by aminopeptidase N and 

neutral endopeptidase (“enkephalinases”). Preventing this degradation by inhibitors (in the CNS or in 

peripheral tissues) has been shown to produce analgesic effects in many animal models and in some 

human trials [8, 13, 102]. This strategy avoids unphysiologically high concentrations of exogenous agonists 

at (ubiquitously distributed) receptors and, thus, diminishes the risk for development of receptor 

downregulation, tolerance, desensitization, off-site or paradoxical excitatory effects [13]. Another 

interesting strategy is based on vaccination-induced recruitment of opioid peptide-producing lymphocytes 

to inflamed tissue [103]. 

 

3.3. Allosteric modulators 

 

Allosteric modulators of opioid receptors were shown to influence the affinity and/or efficacy of 

orthosteric ligands in vitro, but evidence for in vivo efficacy is lacking so far [26]. Nonetheless, this concept 

is intriguing because positive allosteric modulators may enhance the activity of endogenous opioid 

peptides which are elevated during stress and pain. This activity would be confined to opioid receptors that 

are exposed to released endogenous opioids and would thereby avoid side effects (similar to the concept 

of enkephalinase inhibitors) [13, 26]. 

 

3.4. Bivalent ligands 

 

Opioid receptors (and other GPCR) can form dimers or oligomers (i.e. two or more monomers physically 

interacting with each other). A number of bivalent ligands incorporating distinct pharmacophores for two 

receptors are being investigated [23, 100]. The underlying idea is that the combination of agonist and 

antagonist properties at different opioid or nonopioid receptors may reduce side effects. Indeed, some of 

these compounds have shown promising pharmacological profiles in preclinical investigations [100]. 

However, previous clinical studies have demonstrated that such compounds typically exhibit ceiling effects 

for analgesia and may elicit a withdrawal syndrome when administered together with a pure agonist [15].   

 

3.5. Biased signaling 
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The concept of biased signaling (i.e. preferential activation of distinct intracellular pathways) has generated 

considerable excitement [22, 23, 36, 88, 100, 104]. Opioid agonists that primarily activate G-proteins rather 

than arrestins were sought for, based on the hypothesis that arrestin binding promotes side effects, while 

G-protein activation underlies analgesic effects [22, 88, 104]. However, upon systemic administration of 

opioid agonists, G-protein activation occurs not only in nociceptive neurons (which promote pain), but also 

in neurons driving respiration, arousal and intestinal peristalsis [42, 43, 45, 105]. Thus, an opioid agonist 

that (via G-proteins) effectively reduces electrical excitation of sensory neurons (an essential prerequisite 

for analgesia) will likewise (via G-proteins) inhibit the above mentioned neurons and thereby produce 

respiratory depression, sedation and constipation [42, 43, 45, 105]. Recent studies directly demonstrated 

opioid receptor activation in the brain [104, 106], nausea, vomiting [106] and respiratory depression [65] 

induced by purported biased agonists. Besides, intracellular reaction partners (e.g. arrestins) may be 

differentially involved in opioid receptor internalization depending on species and cell types, and ligand 

bias may not be conserved across different neuronal populations [36, 107]. Indeed, both animal [65, 108] 

and human [109] studies have demonstrated that prototype biased agonists produced similar side effects 

as conventional opioids.  

 

 

3.6. Peripherally restricted opioid agonists 

 

Targeting peripheral opioid receptors became an area of renewed interest. While earlier attempts to 

demonstrate peripheral opioid analgesia in healthy tissue failed, potent antinociception was consistently 

detected in models of nerve damage, inflammatory, visceral, cancer and bone pain [10, 49, 51, 98], in 

keeping with the notion that injury and inflammation unmask peripheral opioid effects (see above). In 

addition, awareness increased that many acute and chronic pain syndromes depend mainly on the 

stimulation of DRG neurons [3, 4], and that adverse effects of conventional opioids or of nonsteroidal 

analgesics (gastrointestinal ulcers, bleeding, stroke, myocardial infarction) [100, 110] may be avoided. 

Moreover, in contrast to other analgesic drug targets (e.g. the selective blockade of individual excitatory 

ion channels or receptors on neurons [4, 100]), a significant advantage of opioid receptor activation is the 

simultaneous and synergistic modulation of multiple molecules, e.g. Ca2+-, K+- and TRP-channels [10, 31-

34], thus implying a wider range of efficacy.  

Both animal and human studies have demonstrated that peripheral opioid receptors mediate a 

substantial proportion of analgesia produced by conventional opioids [10, 19]. In clinical trials the selective 

blockade of peripheral opioid receptors led to about 50% increase in intravenous morphine requirements 

for pain relief during the first four hours after knee replacement surgery, suggesting that about half of the 
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analgesic effect produced by systemic opioids is mediated outside the CNS [62]. The most extensively 

studied regimen is the intraarticular administration of low doses of morphine during surgery [39, 50, 111]. 

Meta-analyses showed that it produces postoperative pain relief of similar efficacy to local anesthetics 

[112]. In many small clinical trials, locally applied opioids (e.g. dermal formulations, gels) produced 

analgesic actions in skin ulcers, cystitis, oral mucositis, corneal abrasion, neuropathic pain, chronic arthritis 

and bone injury. No significant adverse effects have been reported so far [38, 39]. In addition, gene-

therapeutic approaches enhancing the expression of peripheral opioid receptors and peptides have been 

investigated [113, 114].  

Different strategies to obtain peripherally restricted opioids were pursued. A common approach is 

the development of hydrophilic substances with minimal capability to cross the blood-brain-barrier. Among 

the first compounds were the mu-agonist loperamide and the kappa-agonist asimadoline. Peripheral 

restriction was also aimed for with glucuronidation, arylacetamide, morphinan-based, triazaspiro and 

peptidic compounds [10, 30, 37, 98, 100, 115-117]. Several preclinical studies have described 

enkephalinase inhibitors with reduced barrier permeability, but clinical studies are lacking to date [8, 13]. 

In collaboration with a group of chemists, we used a strategy applying a cleavable linker to attach 

morphine to a polyglycerol-based nanocarrier [118]. This conjugate (PG-M) was devised to selectively 

release morphine in inflamed tissue and to preclude blood-brain barrier permeation due to its high 

molecular weight and hydrophilicity. Preclinical experiments showed that this construct exclusively 

activated peripheral opioid receptors to produce analgesia in injured tissue without evoking sedation or 

constipation [118]. 

In a recent cooperative project with mathematicians, we pursued a pharmacodynamic concept that 

is independent of pharmacokinetic issues such as barrier permeability, but relies on acidosis in damaged 

tissue (Table 1). We hypothesized that opioid receptors and ligands exhibit different conformation 

dynamics in inflamed compared to noninflamed tissue (brain, intestinal wall) [49, 119]. Novel methods of 

computer simulations indicated that opioid ligands assume a much more stable binding position at low pH 

than at physiological pH, suggesting that agonists have an enhanced potential to activate the receptor 

under acidic (inflamed) conditions. Based on these in silico studies, a prototype (NFEPP) was designed that 

selectively activated peripheral opioid receptors and induced analgesia in injured tissue (at low pH), while 

typical adverse effects (respiratory depression, reward, sedation, motor disturbance, constipation) elicited 

in noninjured environments (at normal pH in brain or intestinal wall) were absent [55, 120]. These results 

were attributed both to acidosis-induced conformational alterations of peripheral opioid receptors, and to 

the low acid dissociation constant of NFEPP (pKa = 6.8). The latter property precludes protonation of a 

tertiary amine in the ligand (an essential prerequisite for activation of opioid receptors) in noninflamed 

tissues [55, 56, 121, 122]. This is unique because conventional opioid agonists have pKa values above 7.5 

and are therefore protonated and capable of activating opioid receptors at both low and normal pH values 
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[55, 56]. Importantly, both NFEPP and PG-M produced analgesic effects of similar magnitude to 

conventional opioids [55, 118, 120]. These findings await further toxicological evaluation and confirmation 

in clinical trials.  

 

4. Conclusion 

 

The most serious problems of currently available opioid analgesics arise from the non-selective activation 

of ubiquitous opioid receptors throughout central and peripheral compartments. To preclude adverse 

effects, promising perspectives are augmenting endogenous opioid actions and selectively targeting 

peripheral opioid receptors. Species differences and validity of animal models are important considerations 

when comparing preclinical and clinical data. Although some biased and peripherally selective agonists 

have advanced to phase III trials, novel drugs have not become available for routine clinical application. 

Besides pharmacological treatments, non-pharmacological approaches must be recognized, particularly in 

chronic non-cancer pain. 

 

5. Expert opinion   

 

The treatment of acute and chronic pain remains a major challenge in clinical medicine and public health. 

For example, less than half of patients undergoing surgery report adequate postoperative pain relief [18], 

and a lack of fundamental knowledge about the management of chronic pain has contributed to the 

widespread misuse of analgesic drugs [17]. This epidemic has not only taught us that novel analgesics with 

less abuse liability are badly needed, but that conflicts of interest and validity of models must be 

considered in the context of drug development. Although basic research on pain and analgesia continues at 

a rapid pace, translation into clinical applications has been difficult [4, 100]. Both diagnostic and 

therapeutic approaches (e.g. brain imaging, genetics) are being investigated, but have only rarely reached 

practical applicability in patients [84, 85, 123, 124]. Many obstacles have been discussed, including 

overinterpretation of data, reporting bias towards neglecting negative results, flawed study design, 

inadequate animal models, genetic and species differences [4, 66, 75, 100, 123, 125, 126].  

 The recent flurry of publications on GPCR structures enables novel approaches to elucidate biased 

signaling, allosteric and oligomeric modulation of opioid receptor function. Recent studies indicate that the 

dynamics of ligand-receptor interactions are different under normal versus pathological conditions [55, 

56]. The most serious unresolved problems arise from the non-selective activation of ubiquitous opioid 

receptors throughout central and peripheral compartments. To avoid these, promising perspectives appear 

to be augmenting endogenous opioid actions and selectively targeting peripheral opioid receptors. Indeed, 

the potential of peripheral actions is increasingly recognized by researchers and clinicians [3, 4, 13, 14, 19, 
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37, 39, 74, 100, 111]. The selective activation of peripheral opioid receptors may be achieved by 

pharmacokinetic (e.g. PG-M) or pharmacodynamic (e.g. NFEPP) approaches. This strategy not only 

eliminates the source of pain generation in injured tissues, but also provides synergistic modulation of 

multiple excitatory molecules in nociceptive neurons, in contrast to other methods such as the blockade of 

individual ion channels or biased ligands [100].  
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Figure legends: 

 

Fig. 1: Opioid receptor signaling and recycling (adapted from [127]) 

Upper panel: Opioid receptor ligands induce a conformational change at the receptor which allows 

coupling of G-proteins to the receptor. The heterotrimeric G-protein dissociates into active Gα and Gβγ 

subunits (a) which can inhibit adenylyl cyclase and reduce cAMP production (b), decrease the conductance 

of voltage-gated Ca++ channels or open rectifying K+ channels (c). In addition, the phospholipase C / 

phosphokinase C pathways can be activated (d) to modulate Ca++ channel activity in the plasma membrane 

(e). Lower panel: Opioid receptor desensitization and endocytosis is activated by G-protein-coupled 

receptor kinases (GRK). After arrestin binding, the receptor is in a desensitized state at the plasma 

membrane (a). Arrestin-bound receptors can then be internalized via a clathrin-dependent pathway, and 

either be recycled to the cell surface (b) or degraded in lysosomes (c). 

Adapted from Handb Exp Pharmacol. 2006/11/08 ed 2007:31-63. Published with permission of Springer. 

 

                                                       

Table 1: pH values in inflamed tissues measured in vivo/ex vivo (adapted from [46]) 
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Table 1: pH values in inflamed tissues measured in vivo/ex vivo (adapted from [46]) 
 

Reference Species, tissue lowest pH 

Häbler C: Klin. 

Wochenschrift 

1929;34:1569-71 

Human, abscess 5.4 

Koldajew B, Altschuler M:  

Z. Immunitätsforschung 

1930;69:18-24 

Guinea pig, intraperitoneal bacterial 

inoculation 

Mouse, s.c., i.p. bacterial inoculation 

5.6 

 

5.8 

Menkin V: Am. J. Pathol. 

1934;10:193-210 

Dog, turpentine-induced pleural exudate 6.6 

Voegtlin C et al: Natl. Inst. 

Health Bulletin 1935;164:1-

14 

Rat, implanted tumors 6.82 

Menkin V, Warner CR: Am. 

J. Pathol. 1937;13:25-43 

Dog, turpentine-induced pleural exudate 6.5 

Meyer et al: Cancer Res. 

1948;8(11):513-8 

Human, malignant tumors, inflamed tissues 5.44 

Revici E et al: Bull. Inst. 

Appl. Biol. 1949;1:21-38 

Human, malignant tumor 5.7 

Menkin V. In: Biochemical 

Mechanisms in 

Inflammation. Ed. CC. 

Thomas. pp. 66-103, 1956 

Dog, turpentine-induced pleural exudate 6.0 
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Jebens E, Monk-Jones Me:  

J Bone Joint Surg Br. 

1959;41-B(2):388-400 

Human, osteoarthritis, joint injury, synovial 

fluid 

6.5 

Pampus F: Acta Neurochir. 

1963;11:305-18 

Human, astrocytoma 5.85 

Ashby BS, Cantab MB: 

Lancet 1966;Aug 6:312-5 

Human, melanoma 6.4 

Cummings NA, Nordby GL: 

Arthritis & Rheumatism 

1966;9(1)47-56 

Human, rheumatoid arthritis synovial fluid 7.08 

Goldie I, Nachemson A: 

Acta orthop. Scandinav. 

1969;40:634-41 

Human, rheumatoid arthritis synovial fluid 6.0 

Goldie I, Nachemson A: 

Acta orthop. Scandinav. 

1970;41:354-62 

Human, rheumatoid arthritis synovial fluid 6.4 

Falchuk et al: Am J Med. 

1970;49(2):223-31 

Human, rheumatoid arthritis 6.84 

Treuhaft & McCarty: 

Arthritis & Rheumatism 

1971; 14(4): 475-84 

Human, arthritis 6.60 

Hutchins & Sheldon: Proc. 

Soc. Exp. Biol. Med. 

1972;140(2):623-7 

Rabbit, diabetic skin wounds 6.9 

Silver: Philos. Trans. R. Soc. Rabbit, brain, wounds, ischemia 5.0 
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Lond. B Biol. Sci. 

1975;271(912):261-72 

Jacobus et al: Nature 

1977;265:756-8 

Rat, ischemic heart, intracellular 5.7  

Levine & Kelly: J. Reprod. 

Fert. 1978;52:333-5 

Rat, seminiferous tubules and epididymis 6.57+0.08 

Vaupel et al: Cancer Res. 

1981;41:2008-13 

Mouse mammary carcinoma 5.8 

Farr et al: Clin. Exp. 

Rheumatol. 1985;3:99-104 

Human, rheumatoid and osteoarthritis 

synovial fluid aspirated 

6.85 

Punnia-Moorthy: J. Oral 

Pathol. 1987;16:36-44 

Rat, air pouch granuloma induced by 

carrageenan, dextran, staph. aureus 

6.87 

Pan et al: PNAS 

1988;85:7836-9 

Human, exercised muscle, intracellular pH 6.1 

Hood et al: Am. J. Physiol. 

1988;255:F479-85 

Human, exercised muscle, calculated 

intracellular pH 

6.31+0.09 

Geborek et al: J. Rheumatol. 

1989;16:468-72 

Human, rheumatoid arthritis synovial fluid 7.03 

Tulamo et al: Equine Vet. J. 

1989;21:325-31 

Horse, staph. aureus-induced arthritis, 

synovial fluid aspirated 

6.2 

Newell et al. PNAS 

1993;90:1127-31 

Nude mouse; implanted tumors 6.65 

Simmen, Blaser. Am. J. 

Surg. 1993;166(1):24-7 

Human, abdominal abscess 6.0 

Gillies RJ et al: Am. J. Mouse, implanted tumor 6.66 
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Physiol. 1994;267:C195-

C203 

Alfaro et al: Inflamm. Res. 

1996;45:405-11  

Rat, carrageenan inflammation, aspirated 6.94 

Issberner et al: Neurosci. 

Lett. 1996;208:191-4 

Human, exercised muscle, intracutaneous pH 6.67 

Stubbs et al: Advan. Enzyme 

Regul. 1999;39:13-30 

Rat, mouse, implanted tumors 6.3 

Ojugo et al: NMR Biomed. 

1999;12:495-504 

Mouse, implanted tumors 6.0 

Andersson et al. J. 

Rheumatol. 1999;26:2018-

24 

Rat, BSA-induced arthritis 5.66 

Woo et al. Anesthesiology 

2004;101:468-75 

Rat, plantar/gastrocnemius incision 6.54+0.12 

Gallagher et al. Nature 2008; 

453(7197):940-3 

Mouse, implanted subcutaneous lymphoma 6.0 

Spahn, Del Vecchio et al. 

Science 2017;355:966-9 

Rat, Freund’s adjuvant paw inflammation;  

paw incision 

6.8 

7.02 

González-Rodríguez et al. 

eLife 2017;6:e27081 

Rat, Freund’s adjuvant paw inflammation 6.82 

Rodriguez-Gaztelumendi et 

al. Pain 2018, in press 

Rat, chronic sciatic nerve constriction; 

intraperitoneal acetic acid injection 

6.91 

4.52 (5 min) 

6.97 (15 min)

 




